- 1. Find the values of x and y if $\left(\frac{x}{3} \frac{y}{4}\right) + \frac{3}{4}yi = -3 + 5i$
- 2. For what real numbers of x and y are the number $-3 + x^2$ y i and $x^2 + y + 4$ i conjugate complex numbers?.
- 3. Express the following complex number in x + i y form (i) (6+5i)² (ii) $\frac{3-7i}{2+5i}$ (iii) $\frac{4+3i}{3-4i} + \frac{3-4i}{4+3i}$
- 4. Find the conjugate of the following complex number (i) $1-2i^6$ (ii) -5i (iii) 7
- 5. Find the multiplicative inverse of the following complex number (a) $\frac{3+4i}{4-5i}$ (b) 6i-3 (c) $\frac{3-4i}{(4-2i)(1+i)}$
- 6. Find the modulus and amplitude of the following complex numbers

(a)
$$1 - \sqrt{3} i$$
 (b) i (c) $\frac{-1 - \sqrt{3} i}{2}$ (d) $\frac{1 + 2 i}{1 - 2 i}$ (e) $\frac{(1 + i)(1 + \sqrt{3} i)}{1 - i}$.

7. Express the following complex number in polar form

(a)
$$\sqrt{3}$$
 + i (b) $-i\sqrt{2} - \sqrt{2}$ (c) $\frac{-1+\sqrt{3}i}{2}$ (d) 1-i (e) 7
(f) -i (g) $\frac{2+6\sqrt{3}i}{5+\sqrt{3}i}$.

8. If
$$x + iy = \sqrt{\frac{a+ib}{c+id}}$$
. Show that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

9. Find the real values if θ where $0 \le \theta \le \pi$ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely imaginary.

10.Convert the complex number
$$Z = \frac{i-1}{\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}}$$
 in polar form.

11. Solve the following quadratic equations over complex roots (a) $x^{2} + 1 = 0$ (b) $x^{2} + 2x + 5 = 0$ (c) $x^{2} - 4x + 7 = 0$ (d) $17x^{2} + 28x + 12 = 0$ (e) $21x^{2} - 28x + 10 = 0$ 12. If $p + iq = \frac{(a+i)^{2}}{2a-i}$. Show that $p^{2} + q^{2} = \frac{(a^{2}+1)^{2}}{4a^{2}+1}$ 13. If $\sqrt[3]{x+iy} = a+ib$. Prove that $\frac{x}{a} + \frac{y}{b} = 4(a^{2} - b^{2})$. 14. Find the square root of the following complex numbers (a) $33 - 56i(b) - 11 - 4\sqrt{3}i(c) 3 + 4i(d) 11 - 60i(e) - 1 + 2\sqrt{2}i$ 15. Find the real value "x" which will satisfy the equation $a - ib = \frac{1 - ix}{1 + ix}$

if
$$a^2 + b^2 = 1$$